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1. Motivation

The controller is a critical part in a SDN network
Big impact if an app crashes the controller

Malicious apps could (unintentionally)
Crash the controller
Jam the whole network

Current state of other SDN Controller %1:
OpenDaylight has two Plugins for app virtualisation 2

No App-to-App communication, different API

ONOS has multi controller support

Rosemary has Resource Monitoring and app Isolation 3
No code, just an idea

HyperFlex implements rate-limiting
with a complex setup *

Currently no controller monitors the switch ressources
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1. Motivation - Goals

Accelerate research progress in shared SDN testbeds
Use case: Multiple apps work together: e.g. Segment Routing +SDM

Ryu is one of the most common SDN controllers in research >-°

Goal: Make app isolation possible with Ryu

Impact:
Protect the controller, the network, and make SDN development
easier
Build the foundation for a hypervisor with switch resource
monitoring
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2. Background & Problem Definition

No access control for apps
Should this app get all Events?
Is this app allowed to send FlowMod/PacketOut/... ?
No sanity checks of the events
Valid matcher fields used?
Enough free space on the switch?
Thread scheduling not enforced (non-preemtive)
An app can take 100% processing power forever
No rate-limiting
An app can take 100% of the switch/controller ressources with

event flooding
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3. System Design
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Approach:

Put every app into a container
Can be distributed over the network
Not a full controller but enables app isolation

Malicious apps can now only crash their own container and not the
controller

Insert another layer in between to apply event filter rules
Only forward specific event types
Manipulate fields of the event message
“Virtual memory” concept for e.q.
Priorities and Flowtables

This way, multiple researchers can work on their own projects on the
same controller without disturbing each other
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3. System Design

Design goals
No modification of the application code needed
App will not know if it's run inside the hypervisor
Possibility to use existing code
Easy to setup
Just like installing a normal Ryu controller
No extra packages, programs or server needed

Acceptable performance loss due the network communication
More in the section ‘Evaluation’

Easy API for researchers to manage the hypervisor

Basis for a hypervisor with switch resource protection
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3. System Design

Current Ryu architecture
Every app runs in a non-preemptive thread
Apps can register handlers to get events
Apps can generate events or directly send OF-Events to the switch

Ryu just takes events and forwards them

Ryu Controller
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Ryu Server Ryu Client
Switch
OF Message | Hypervisor Network Socket Client Message A
Controller Queue App Controller Queue PP
Switch
Ryu Client
Ryu Client
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4. Implementation g R
Server instance

“Hypervisor” implemented as an RyuApp Ryu Server
Register handler for all events
Handle the socket connection to the remote /\
instances OF | Message [ Hypervisor
Apply the filter rules on incoming & outgoing e
events \/

Ryu Client

Client instance

Connect to the master via a socket

Load a substitute controller instead of the
OF-Controller Glent | Message [ p-
Create fake DataPath objects for the apps e
Generate OF Events from the informations
sent from the master

’

C
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4. Implementation Decision

Client/Server Setup
Best way to protect the controller from malicious apps

Using NanoMsg for network communication
Lightweight
One-to-One and One-to-Many protocols

cPickle for data serialization
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5. Evaluation
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Evaluation topics:

Performance
Plain Ryu vs. Hypervisor
Impact of multiple clients

Robustness
Impact of an malicious application

Benchmarks were done with cbench
Simulate one to 20 switches
Repeat every test 100 times
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Direct comparison or message latency
Using the ryu/app/cbench.py application
Original Ryu Controller Hypervisor
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5. Evaluation - Performance UNIVERSITAT
Impact of multiple connected clients to the hypervisor
Hypervisor with five clients Hypervisor with ten clients
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5. Evaluation - Robusthess

Impact of a malicious application
Simulate computationally intensive behaviour with a sleep() call

Original Ryu Controller Hypervisor with two clients
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6. Conclusion & Future Work

K/
%®

< Convert Ryu into a Client/Server Better socket handling to increase

application performance
% Implement application isolation < Define a filter language with more
features
# Message filtering )

< Encryption & authentication
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Thank you for your attention!
Questions?

mail@felixbreidenstein.de
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