A Hypervisor for the Ryu

NOS

Bachelor Thesis - Final presentation

Felix Breidenstein

FB 20 - Informatik
Technische Universitat Darmstadt
E-Mail: mail@felixbreidenstein.de

Supervisor
Dipl.-Wirtsch.-Inf. Jeremias Blendin

Tuesday, 18 October 2016

Peer-to-Peer Systems Engineering | Prof. Dr. David Hausheer

TECHNISCHE
UNIVERSITAT
DARMSTADT

Outline

Motivation

Background & Problem Definition
System Design

Implementation

Evaluation

Conclusion & Future Work

Peer-to-Peer Systems Engineering | Felix Breidenstein 2

1. Motivation

The controller is a critical part in a SDN network
Big impact if an app crashes the controller

Malicious apps could (unintentionally)
Crash the controller
Jam the whole network

Current state of other SDN Controller %1:
OpenDaylight has two Plugins for app virtualisation 2

No App-to-App communication, different API

ONOS has multi controller support

Rosemary has Resource Monitoring and app Isolation 3
No code, just an idea

HyperFlex implements rate-limiting
with a complex setup *

Currently no controller monitors the switch ressources

Peer-to-Peer Systems Engineering | Felix Breidenstein 3

1. Motivation - Goals

Accelerate research progress in shared SDN testbeds
Use case: Multiple apps work together: e.g. Segment Routing +SDM

Ryu is one of the most common SDN controllers in research >-°

Goal: Make app isolation possible with Ryu

Impact:
Protect the controller, the network, and make SDN development
easier
Build the foundation for a hypervisor with switch resource
monitoring

Peer-to-Peer Systems Engineering | Felix Breidenstein 4

.« r;‘ TECHNISCHE
=9 UNIVERSITAT
2 -~ DARMSTADT

2. Background & Problem Definition

No access control for apps
Should this app get all Events?
Is this app allowed to send FlowMod/PacketOut/... ?
No sanity checks of the events
Valid matcher fields used?
Enough free space on the switch?
Thread scheduling not enforced (non-preemtive)
An app can take 100% processing power forever
No rate-limiting
An app can take 100% of the switch/controller ressources with

event flooding

Peer-to-Peer Systems Engineering | Felix Breidenstein 5

3. System Design

L) TECHNISCHE
= 7/)~) UNIVERSITAT
%9’ DARMSTADT

Approach:

Put every app into a container
Can be distributed over the network
Not a full controller but enables app isolation

Malicious apps can now only crash their own container and not the
controller

Insert another layer in between to apply event filter rules
Only forward specific event types
Manipulate fields of the event message
“Virtual memory” concept for e.q.
Priorities and Flowtables

This way, multiple researchers can work on their own projects on the
same controller without disturbing each other

Peer-to-Peer Systems Engineering | Felix Breidenstein

L) TECHNISCHE
= 7/)~) UNIVERSITAT
%9’ DARMSTADT

3. System Design

Design goals
No modification of the application code needed
App will not know if it's run inside the hypervisor
Possibility to use existing code
Easy to setup
Just like installing a normal Ryu controller
No extra packages, programs or server needed

Acceptable performance loss due the network communication
More in the section ‘Evaluation’

Easy API for researchers to manage the hypervisor

Basis for a hypervisor with switch resource protection

Peer-to-Peer Systems Engineering | Felix Breidenstein 7

TECHNISCHE
UNIVERSITAT
DARMSTADT

3. System Design

Current Ryu architecture
Every app runs in a non-preemptive thread
Apps can register handlers to get events
Apps can generate events or directly send OF-Events to the switch

Ryu just takes events and forwards them

Ryu Controller

By,
i3 /\

Sl HEREHgE Application
Controller Queue PP

B o
e \/

Peer-to-Peer Systems Engineering | Felix Breidenstein

TECHNISCHE

3. System Design UNIVERSITAT
DARMSTADT
Ryu Server Ryu Client
Switch
OF Message | Hypervisor Network Socket Client Message A
Controller Queue App Controller Queue PP
Switch
Ryu Client
Ryu Client

Peer-to-Peer Systems Engineering | Felix Breidenstein 9

TECHNISCHE

4. Implementation g R
Server instance

“Hypervisor” implemented as an RyuApp Ryu Server
Register handler for all events
Handle the socket connection to the remote /\
instances OF | Message [Hypervisor
Apply the filter rules on incoming & outgoing e
events \/

Ryu Client

Client instance

Connect to the master via a socket

Load a substitute controller instead of the
OF-Controller Glent | Message [p-
Create fake DataPath objects for the apps e
Generate OF Events from the informations
sent from the master

’

C

Peer-to-Peer Systems Engineering | Felix Breidenstein 10

L) TECHNISCHE
= 7/)~) UNIVERSITAT
%9’ DARMSTADT

4. Implementation Decision

Client/Server Setup
Best way to protect the controller from malicious apps

Using NanoMsg for network communication
Lightweight
One-to-One and One-to-Many protocols

cPickle for data serialization

Peer-to-Peer Systems Engineering | Felix Breidenstein 11

5. Evaluation

TECHNISCHE
UNIVERSITAT
DARMSTADT

Evaluation topics:

Performance
Plain Ryu vs. Hypervisor
Impact of multiple clients

Robustness
Impact of an malicious application

Benchmarks were done with cbench
Simulate one to 20 switches
Repeat every test 100 times

Peer-to-Peer Systems Engineering | Felix Breidenstein

12

TECHNISCHE

5. Evaluation - Performance UNIVERSITAT
DARMSTADT
Direct comparison or message latency
Using the ryu/app/cbench.py application
Original Ryu Controller Hypervisor
=—0.21 5.5
Eo0.20 Eso
+ 0.19 245
g 3 4.0
u>40'18 u>43'5
8 0.17 S
§0.15 §2.0
5',0.14 5'11_5
> >
< 0'130 5 10 15 20 < 1'00 5 10 15 20
Number of switches Number of switches

Peer-to-Peer Systems Engineering | Felix Breidenstein 13

TECHNISCHE

1 - UNIVERSITAT
5. Evaluation - Performance UNIVERSITAT
Impact of multiple connected clients to the hypervisor
Hypervisor with five clients Hypervisor with ten clients
= 5.0 5.0
0 n
§,45 ,§4.5
‘%40 -'24.0
(]
it 25 235
©3.0 5 3.0
> >
e 2.5 925
3 3
32 0 © 2.0
51.5 51.5
¢
< 1'00 5 10 15 20 1'OO 5 10 15 20
Number of Switches Number of switches

Peer-to-Peer Systems Engineering | Felix Breidenstein 14

«g7h TECHNISCHE
S@/)~\ UNIVERSITAT
Y9y DARMSTADT

5. Evaluation - Robusthess

Impact of a malicious application
Simulate computationally intensive behaviour with a sleep() call

Original Ryu Controller Hypervisor with two clients

(@)}
(@)}

)]
u

I
N

w
w

N
N

=
o

5 10 15 20 5 10 15 20
Number of Switches Number of Switches

o

Avg. Latency of Events [ms]
Avg. Latency of Events [ms]

[

Peer-to-Peer Systems Engineering | Felix Breidenstein 15

TECHNISCHE
UNIVERSITAT
DARMSTADT

6. Conclusion & Future Work

K/
%®

< Convert Ryu into a Client/Server Better socket handling to increase

application performance
% Implement application isolation < Define a filter language with more
features
Message filtering)

< Encryption & authentication

Peer-to-Peer Systems Engineering | Felix Breidenstein 16

Thank you for your attention!
Questions?

mail@felixbreidenstein.de

Peer-to-Peer Systems Engineering | Prof. Dr. David Hausheer 17

mailto:mail@felixbreidenstein.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Links

[0] Sandra Scott-Hayward. Design and deployment of secure, robust, and resilient sdn controllers. In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1-5. IEEE, 2015.

[1]1 Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. Survey on network virtuali-
zation hypervisors for software defined networking. 2015.

[2] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a model-driven sdn
controller architecture. In 2014 IEEE 15th International Symposium on, pages 1-6. IEEE, 2014.

[3] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent
Byunghoon Kang. 2014. Rosemary: A Robust, Secure, and High-performance Network Operating System. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS '14). ACM, New York, NY, USA, 78-89.

[4] Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. Hyperflex: An sdn virtualization architecture
with flexible hypervisor function allocation. In Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, pages 397—-405. IEEE, 2015.

[5] A. Sgambelluri, A. Giorgetti, F. Cugini, G. Bruno, F. Lazzeri, and P. Castoldi, "First Demonstration of SDN-based Segment Routing in Multi-layer
Networks," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1A.5.

[6] F. Paolucci, A. Giorgetti, F. Cugini and P. Castoldi, "SDN and PCE implementations for segment routing," Networks and Optical Communications -
(NOC), 2015 20th European Conference on, London, 2015, pp. 1-4., doi: 10.1109/NOC.2015.7238607

18

