
A Hypervisor for the Ryu
NOS
Bachelor Thesis - Final presentation

Peer-to-Peer Systems Engineering | Prof. Dr. David Hausheer 1

Felix Breidenstein

FB 20 - Informatik
Technische Universität Darmstadt
E-Mail: mail@felixbreidenstein.de

Supervisor
Dipl.-Wirtsch.-Inf. Jeremias Blendin

Tuesday, 18 October 2016

Outline

❖ Motivation

❖ Background & Problem Definition

❖ System Design

❖ Implementation

❖ Evaluation

❖ Conclusion & Future Work

Peer-to-Peer Systems Engineering | Felix Breidenstein 2

1. Motivation

❖ The controller is a critical part in a SDN network
➢ Big impact if an app crashes the controller

❖ Malicious apps could (unintentionally)
➢ Crash the controller
➢ Jam the whole network

❖ Current state of other SDN Controller 0,1:
➢ OpenDaylight has two Plugins for app virtualisation 2

▪ No App-to-App communication, different API
➢ ONOS has multi controller support
➢ Rosemary has Resource Monitoring and app Isolation 3

▪ No code, just an idea
➢ HyperFlex implements rate-limiting

▪ with a complex setup 4

➢ Currently no controller monitors the switch ressources

Peer-to-Peer Systems Engineering | Felix Breidenstein 3

1. Motivation - Goals

❖ Accelerate research progress in shared SDN testbeds

❖ Use case: Multiple apps work together: e.g. Segment Routing +SDM

❖ Ryu is one of the most common SDN controllers in research 5,6

❖ Goal: Make app isolation possible with Ryu

❖ Impact:
➢ Protect the controller, the network, and make SDN development

easier
➢ Build the foundation for a hypervisor with switch resource

monitoring

Peer-to-Peer Systems Engineering | Felix Breidenstein 4

2. Background & Problem Definition

❖ No access control for apps

▪ Should this app get all Events?

▪ Is this app allowed to send FlowMod/PacketOut/… ?

❖ No sanity checks of the events

▪ Valid matcher fields used?

▪ Enough free space on the switch?

❖ Thread scheduling not enforced (non-preemtive)

➢ An app can take 100% processing power forever

❖ No rate-limiting

➢ An app can take 100% of the switch/controller ressources with

event flooding

Peer-to-Peer Systems Engineering | Felix Breidenstein 5

3. System Design

Approach:

❖ Put every app into a container
➢ Can be distributed over the network
➢ Not a full controller but enables app isolation
➢ Malicious apps can now only crash their own container and not the

controller

❖ Insert another layer in between to apply event filter rules
➢ Only forward specific event types
➢ Manipulate fields of the event message
➢ “Virtual memory” concept for e.g.

▪ Priorities and Flowtables

❖ This way, multiple researchers can work on their own projects on the
same controller without disturbing each other

Peer-to-Peer Systems Engineering | Felix Breidenstein 6

3. System Design

Design goals

❖ No modification of the application code needed
➢ App will not know if it's run inside the hypervisor
➢ Possibility to use existing code

❖ Easy to setup
➢ Just like installing a normal Ryu controller
➢ No extra packages, programs or server needed

❖ Acceptable performance loss due the network communication
➢ More in the section ‘Evaluation’

❖ Easy API for researchers to manage the hypervisor

❖ Basis for a hypervisor with switch resource protection

Peer-to-Peer Systems Engineering | Felix Breidenstein 7

❖ Current Ryu architecture

➢ Every app runs in a non-preemptive thread

➢ Apps can register handlers to get events

➢ Apps can generate events or directly send OF-Events to the switch

➢ Ryu just takes events and forwards them

3. System Design

Peer-to-Peer Systems Engineering | Felix Breidenstein 8

3. System Design

Peer-to-Peer Systems Engineering | Felix Breidenstein 9

4. Implementation

❖ Server instance
➢ “Hypervisor” implemented as an RyuApp
➢ Register handler for all events
➢ Handle the socket connection to the remote

instances
➢ Apply the filter rules on incoming & outgoing

events

❖ Client instance
➢ Connect to the master via a socket
➢ Load a substitute controller instead of the

OF-Controller
➢ Create fake DataPath objects for the apps
➢ Generate OF Events from the informations
 sent from the master

Peer-to-Peer Systems Engineering | Felix Breidenstein 10

4. Implementation Decision

❖ Client/Server Setup
➢ Best way to protect the controller from malicious apps

❖ Using NanoMsg for network communication
➢ Lightweight
➢ One-to-One and One-to-Many protocols

❖ cPickle for data serialization

Peer-to-Peer Systems Engineering | Felix Breidenstein 11

5. Evaluation

❖ Evaluation topics:

➢ Performance
▪ Plain Ryu vs. Hypervisor
▪ Impact of multiple clients

➢ Robustness
▪ Impact of an malicious application

❖ Benchmarks were done with cbench
➢ Simulate one to 20 switches
➢ Repeat every test 100 times

Peer-to-Peer Systems Engineering | Felix Breidenstein 12

5. Evaluation - Performance

Peer-to-Peer Systems Engineering | Felix Breidenstein 13

Original Ryu Controller Hypervisor

❖ Direct comparison or message latency
❖ Using the ryu/app/cbench.py application

❖ Impact of multiple connected clients to the hypervisor

5. Evaluation - Performance

Peer-to-Peer Systems Engineering | Felix Breidenstein 14

Hypervisor with five clients Hypervisor with ten clients

❖ Impact of a malicious application
❖ Simulate computationally intensive behaviour with a sleep() call

5. Evaluation - Robustness

Peer-to-Peer Systems Engineering | Felix Breidenstein 15

Original Ryu Controller Hypervisor with two clients

❖ Better socket handling to increase
performance

❖ Define a filter language with more
features

❖ Encryption & authentication

6. Conclusion & Future Work

❖ Convert Ryu into a Client/Server
application

❖ Implement application isolation

❖ Message filtering

Peer-to-Peer Systems Engineering | Felix Breidenstein 16

Results of this work Future Work

Peer-to-Peer Systems Engineering | Prof. Dr. David Hausheer 17

Thank you for your attention!
Questions?

mail@felixbreidenstein.de

mailto:mail@felixbreidenstein.de

Links

18

[0] Sandra Scott-Hayward. Design and deployment of secure, robust, and resilient sdn controllers. In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–5. IEEE, 2015.

[1] Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. Survey on network virtuali-
zation hypervisors for software defined networking. 2015.

[2] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a model-driven sdn
controller architecture. In 2014 IEEE 15th International Symposium on, pages 1–6. IEEE, 2014.

[3] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent
Byunghoon Kang. 2014. Rosemary: A Robust, Secure, and High-performance Network Operating System. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS '14). ACM, New York, NY, USA, 78-89.

[4] Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. Hyperflex: An sdn virtualization architecture
with flexible hypervisor function allocation. In Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, pages 397–405. IEEE, 2015.

[5] A. Sgambelluri, A. Giorgetti, F. Cugini, G. Bruno, F. Lazzeri, and P. Castoldi, "First Demonstration of SDN-based Segment Routing in Multi-layer
Networks," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1A.5.

[6] F. Paolucci, A. Giorgetti, F. Cugini and P. Castoldi, "SDN and PCE implementations for segment routing," Networks and Optical Communications -
(NOC), 2015 20th European Conference on, London, 2015, pp. 1-4., doi: 10.1109/NOC.2015.7238607

